An Improved Algorithm for Fuzzy Data Mining for Intrusion Detection
نویسندگان
چکیده
We have been using fuzzy data mining techniques to extract patterns that represent normal behavior for intrusion detection. In this paper we describe a variety of modifications that we have made to the data mining algorithms in order to improve accuracy and efficiency. We use sets of fuzzy association rules that are mined from network audit data as models of " normal behavior. " To detect anomalous behavior, we generate fuzzy association rules from new audit data and compute the similarity with sets mined from " normal " data. If the similarity values are below a threshold value, an alarm is issued. In this paper we describe an algorithm for computing fuzzy association rules based on Borgelt's prefix trees, modifications to the computation of support and confidence of fuzzy rules, a new method for computing the similarity of two fuzzy rule sets, and feature selection and optimization with genetic algorithms. Experimental results demonstrate that we can achieve better running time and accuracy with these modifications.
منابع مشابه
Detection of Breast Cancer Progress Using Adaptive Nero Fuzzy Inference System and Data Mining Techniques
Prediction, diagnosis, recovery and recurrence of the breast cancer among the patients are always one of the most important challenges for explorers and scientists. Nowadays by using of the bioinformatics sciences, these challenges can be eliminated by using of the previous information of patients records. In this paper has been used adaptive nero fuzzy inference system and data mining techniqu...
متن کاملA Hybrid Approach of Fuzzy C-mean Clustering and Genetic Algorithm (GA) to Improve Intrusion Detection Rate
This paper describes a hybrid approach of Fuzzy C-means clustering and Genetic Algorithm (GA) is proposed that provides better accuracy & increases the intrusion detection rate. This approach provides better accuracy of detection as compared to K-means and FCM Clustering. With this proposed approach intrusion detection rate is improved considerably.A brief overview of a hybrid approach of genet...
متن کاملDesigning an Intelligent Intrusion Detection System in the Electronic Banking Industry Using Fuzzy Logic
One of the most important obstacles to using Internet banking is the lack of Stability of transactions and some misuse in the course of transactions it is financial. That is why preventing unauthorized access Crime detection is one of the major issues in financial institutions and banks. In this article, a system of intelligence has been designed that recognizes Suspicious and unusual behaviors...
متن کاملIntrusion Detection using Fuzzy Data Mining
With the rapid expansion of computer networks during the past few years, security has become a crucial issue for modern computer systems. A good way to detect illegitimate use is through monitoring unusual user activity. The solution is an Intrusion Detection System (IDS) which is used to identify attacks and to react by generating an alert or blocking the unwanted data. For IDS, use of genetic...
متن کاملA Review of Intrusion Detection Technique by Soft Computing and Data Mining Approach
The growth of internet technology spread a large amount of data communication. The communication of data compromised network threats and security issues. The network threats and security issues raised a problem of data integrity and loss of data. For the purpose of data integrity and loss of data before 20 year Anderson developed a model of intrusion detection system. Initially intrusion detect...
متن کامل